Wednesday, June 30, 2010

Understanding Basic of Ultraviolet Light


Ultraviolet (UV) light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than x-rays, in the range 10 nm to 400 nm, and energies from 3eV to 124 eV. It is so named because the spectrum consists of electromagnetic waves with frequencies higher than those that humans identify as the colour violet.

UV light is found in sunlight and is emitted by electric arcs and specialized lights such as black lights. As an ionizing radiation it can cause chemical reactions, and causes many substances to glow or fluoresce. Most people are aware of the effects of UV through the painful condition of sunburn, but the UV spectrum has many other effects, both beneficial and damaging, on human health.

History of Dye Penetrant Testing


A very early surface inspection technique involved the rubbing of carbon black on glazed pottery, whereby the carbon black would settle in surface cracks rendering them visible. Later, it became the practice in railway workshops to examine iron and steel components by the "oil and whiting" method. In this method, a heavy oil commonly available in railway workshops was diluted with kerosene in large tanks so that locomotive parts such as wheels could be submerged. After removal and careful cleaning, the surface was then coated with a fine suspension of chalk in alcohol so that a white surface layer was formed once the alcohol had evaporated. The object was then vibrated by being struck with a hammer, causing the residual oil in any surface cracks to seep out and stain the white coating. This method was in use from the latter part of the 19th century to approximately 1940, when the magnetic particle method was introduced and found to be more sensitive for ferromagnetic iron and steels.

A different (though related) method was introduced in the 1940's. The surface under examination was coated with a lacquer, and after drying, the sample was caused to vibrate by the tap of a hammer. The vibration causes the brittle lacquer layer to crack generally around surface defects. The brittle lacquer (stress coat) has been used primarily to show the distribution of stresses in a part and not for finding defects.

Intro to Ultrasonic testing



In Ultrasonic testing (UT), very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz and occasionally up to 50 MHz are launched into materials to detect internal flaws or to characterize materials. The technique is also commonly used to determine the thickness of the test object, for example, to monitor pipework corrosion.

Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is a form of non-destructive testing used in many industries including aerospace, automotive and other transportation sectors.

Shielding against X-Rays

LEAD is the most common shield against X-rays because of its high density (11340 kg/m3), stopping power, ease of installation and low cost. The maximum range of a high-energy photon such as an X-ray in matter is infinite; at every point in the matter traversed by the photon, there is a probability of interaction. Thus there is a very small probability of no interaction over very large distances. The shielding of photon beam is therefore exponential (with an attenuation length being close to the radiation length of the material); doubling the thickness of shielding will square the shielding effect.